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Abstract:Recently, unimodular sequence with good correlation and stopband has attracted
considerable attention because it not only benefits the suppression of range sidelobe but also
helps to avoid narrowband interference and electronic jamming. In this paper, an algorithm
is proposed to design sequence with suppressed integrated sidelobe level (ISL) and
stopband power spectrum density based on alternating direction method of multipliers
(ADMM). The design problem is formulated as constrained bi-objective optimization
problem. By applying the Pareto optimization framework and parallelogram identity, the
metric is rewritten as sum of two quadratic functions. The optimization problem is further
simplified as quadratically constrained linear program and linearly constrained quadratic
program via variable separation. The simplified optimization problem is then solved by
ADMM. Additionally, the computation complexity is reduced in the most computationally
demanding step based on truncated singular value decomposition (TSVD) and fast Fourier
transform (FFT). The numerical simulations demonstrate the effectiveness of the proposed
algorithms.

1. Introduction

As the amount of radars and communication electronics grows, the number of consecutive bands
that radars can utilize is decreasing. For instance, radar signal should reduce interference over the
existing navigation and tele- communication systems [1]. The transmitted signal should also avoid
certain bands that exist strong narrowband interference and electronic jamming [2]. Thus, it is
required to design sequence with stopband, namely low power spectrum density in certain band.
However, spectral stopband may degrade the performance of autocorrelation sidelobe, e.g.
waveform with spectral stopband may have higher peak sidelobe level (PSL) and integrated
sidelobe level (ISL) than those without spectral stopband [3]. It is a challenging problem to design
sequence with stopband while maintaining good autocorrelation, especially when unimodular
constraint is considered.
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To date, several studies have investigated to design unimodular sequence with stopband and
good correlation. Overall, these studies are classified into two main categories. The first category
tackles the design problem by optimizing the frequency-modulated waveforms. For example,
spectral nulling technology is implemented in frequency modulation to design waveform with
spectral stopband [4]. Deep spectral nulls can be produced at spectral sidelobes by introducing a
small time-varying phase offset [5]. However, they both suffer high autocorrelation sidelobes
because the correlation metrics are not taken into consideration. Recently, [6] and [7] propose
polyphase coded FM (PCFM) waveform that is constant envelope and spectrally well contained. To
design sequences with good spectral compatibility and correlation performance, a gradient descent-
based method was proposed which follow the PCFM design scheme [8].

The second category addresses the design problem by optimizing phase coding sequence. For
instance, based on fast Fourier transform (FFT) operations, SCAN algorithm is proposed to
suppress stopband spectral power and ISL under the peak-to-average power ratio (PAR) constraint
[2], [9]. In [10], phase-only sequence with desired correlation and stopband properties was designed
based on pattern search. Algorithm based on majorization-minimization was proposed in [11] to
design spectrally constrained sequence with low autocorrelation sidelobes (hereinafter referred to as
SMISL). A method of designing sparse frequency waveform with sidelobe constraint is reported
based on ambiguity function theory [12]. Algorithms based on majorization-minimization and a
gradient method were derived to suppressed autocorrelation sidelobes and arbitrary frequency
stopband [13]. In addition, several studies were reported to design sequences with spectral shape be
closer to desired shape and low mask [14]-[17].

Waveform design is usually subject to several constraints, e.g. modular constraint, similarity
constraint, energy constraint and ambiguity function constraint [1], [18], [19]. Unimodular
constraint is often taken into consideration in order to avoid signal distortion and energy loss caused
by the nonlinear radio frequency component [20]. Peak-to-average ratio constraints is a more
general modular constraint than unimodular constraint [21]. Similarity constraint is needed to force
the designed sequences to share good properties of the reference sequence, e.g. the ambiguity
function [22], [23]. In addition, energy constraint is also considered due to the limitation of power
amplifier in the practice. All of the constraints are significant in practice, and are widely considered
in radar waveform design field.

The aforementioned SCAN and SMISL [9], [11] have fast convergence, low computational
complexity, and suppressed ISL and stopband power. However, both algorithms suffer poor
correlation performance due to high PSL. Besides, the sequences designed by SMISL have high
spectral jitter which may cause peak stopband power (Pstop). Alternating direction method of
multipliers (ADMM) has advantage of handling objective functions completely separately and
finding global optimal solution [24]. It has been widely used in waveform design for optimization
of radar transmit beampattern [25], signal-to-interference-plus-noise ratio [19], and correlation
sidelobe level [16]. To suppress the correlation sidelobe level and stopband spectral power
simultaneously, the ADMM is introduced to the design of phase coding sequence under unimodular
constraint.

In this paper, we focus on the correlation sidelobe level and power spectrum density
minimization-based unimodular sequence design. Firstly, we establish the design problem
formulation based on Pareto optimization, and formulate the bi-objective optimization problem as a
single objective optimization problem. The penalty function is then reformulated as an equivalent
quadratic function based on parallelogram identity. The nonconvex problem is further simplified as
sum of linear and quadratic components by introducing auxiliary variables, which is solved by
ADMM. Different from [16], an efficient method is proposed based on truncated singular value
decomposition (TSVD) [26], [27] and fast Fourier transform (FFT) in the most computationally
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demanding step, where a vast number of computations are required by matrix inverse and
multiplication. Numerical simulations demonstrate the effectiveness of the proposed algorithm, and
the superiority of the proposed algorithm over state-of-the-art methods in terms of PSL while
maintaining the same ISL.

The structure of the paper is as follows. Section I presents a brief introduction to the unimodular
waveform design with good correlation and spectral stopband. Section II formulates the designing
problem considered in this paper. Section III illustrates the reformulation of the design problem and
details of the proposed algorithm. Section IV performs several numerical simulations compared
with the state-of-the-art algorithms to validate the effectiveness of proposed algorithm. Section V
summarizes the conclusions of the paper including a discussion on future research.

Notation: We use boldface upper case letters for matrix and boldface lower case letters for
column vectors. The  , 2

 and F
 represent the absolute value of complex valued scalar, Euclidean

norm of vector and Frobenius norm of matrix, respectively.  T is transpose and  H is Hermitian
transpose.   represents the complex conjugate of vector.    and    denote the real and
imaginary parts of complex-valued scalar, vector and matrix.  diag  denotes a square diagonal
matrix with the elements of a given vector on the main diagonal.

2. Problem formulation

In this section, we formulate the problem of designing sequence with good autocorrelation and
spectral stopband. Firstly, we formulate the problem of suppressing to correlation sidelobe.
Let ,denote the aperiodic unimodular sequence of length N to be designed. The aperiodic
autocorrelation function associated with x is defined as.
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Peak sidelobe level (PSL) and ISL are usually used for synthesizing sequence with good correlation.

The PSL metric is typically formulated as the infinite norm of
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As shown in (1) and (2), the ISL metric is a quartic function with respect to variable x, which is
usually difficult to solving directly due to the non-convexity. With the use of Parseval-type equality,
completeness of Euclidean space and the continuity of Euclidean norm, the minimization of ISL is
almost equivalent to the following ISL metric in the frequency domain (readers can refer to [2], [28],
[29] for more details).
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(3)

where

2[ , , , ]p p pj j j NH
pg e e e     

is the DFT vector, and
p

is given by
2 , 0,1, ,2 1
2p p p N
N
    

(4)
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Let
GH

be the first N columns of the 2N×2N DFT matrix given by
0
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Let
v

be an auxiliary variable defined as
21 2 2 1[ ,e , ]Njj j T Nv e e C   

. The ISL metric is then
2

( ) x vH
ISLf x G N 

(6)
Secondly, we consider the formulation of spectral stopband suppression. By choosing the

frequency grid as 1/2N, the normalized frequency set can be defined as
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Spectral stopband requires that the power distributed

in the specified set of frequencies should be suppressed. Suppose that
S
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The stopband power can be suppressed by minimizing the following penalty function.
2

( ) xH
SPf x S

(8)
Finally, we focus on the formulation of designing unimodular sequences with suppressed

autocorrelation sidelobe and stopband power. The design problem can be formulated as bi-objective
optimization problem under unimodular constraint.

min ( ), ( )
. . ( ) 1, 1, 2, , .

( ) 1, 1, 2, , 2 .

ISL SPf f
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n n N
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x x
x
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In the bi-objective optimization framework, it is hard to find optimal solution minimizing two
penalty functions simultaneous [30]. To find the optimal solution of (9), the Pareto optimization

method is implemented in this paper. Let Pareto weight
 0,1 

, the optimization problem is then
  min ( ) 1 ( )
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Substituting the penalty functions in (6) and (8) into the objective function defined in (10), the
design problem can be rewritten as

 22
min (1 )

. . ( ) 1, 1, 2, , .
( ) 1, 1, 2, , 2 .

H H N

s t n n N
n n N
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  
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S x G x v

x
v (11)

The optimization problem in (11) is difficult to solve directly because it is a bi-variable optimal
problems. Notice that both variable and are only constrained by the same unimodular constraint, so
this issue can be addressed by combining the two variables into one variable defined as

3 1TT T NC    y x v
.More important, the objective function in (11) is sum of squares of Euclidean

norms. With the use of parallelogram identity of Euclidean norms, the following equation is
satisfied.
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where matrix and are given by
  21- - 1-H H

NN     A G S I
(13)

  21- - 1-H H
NN     B G S I

(14)
Thus, the optimization problem (11) can be stated as a compact form.

 2 2min

. . ( ) 1, 1, 2, ,3 .s t n n N
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Ay By

y (15)

3. Algorithm Development

he difficulty lies in the optimization problem (15) is non-convexity caused by unimodular constraint.
In this section, the design problem is firstly reformulated to simplify the nonconvex optimization
problem. Subsequently, an algorithm is derived based on Alternating Direction Method of
Multipliers (ADMM) to solve (15).

3.1. Problem Reformulation

To address the issue of non-convexity in (11), the objective function is split into two terms which

consist of a linear term and a quadratic term. Similar to [16], the last element of
y

is assigned to be

one and define
(3 1) 1

1 [ (1), (2), (3N-1)]T N
N

  y y y y .
To relax the unimodular constraint enforced into the

quadratic term, an auxiliary unimodular variable vector
z

is introduced with the constraint
1 y z .

Let
y 1 1

TT  y , 1 2(1 ) NN    A A e ,
and

1 2(1 ) NN    B B e
where

1A
and

1B ,
is composed
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of first
3N-1

columns of matrix A and B, respectively. The
2Ne

represents
2 1N 

unit vector with the
last element assigned to be one.

The optimization problem (11) can be rewritten as the following equivalent form where the
constant terms are removed.
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To apply ADMM to the design problem, (16) is further converted to real-valued expression.
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Let


and


denote the Lagrange multiplier vector and step size respectively, augmented
Lagrangian function is devise.
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3.2. Solution to (22)

Algorithm1

:Step1 Initialize 1y with random-phase sequence  3

1
( ) ,N

n
n


y λ and  .

:Step2 Compute ( 1)t z using (25) and (26) with 1( ), ( )t ty λ fixed at most recent value.

:Step3 Compute 1( 1)t y using (29) with ( 1), ( )t tz λ fixed at most recent value.

:Step4 Computing ( 1)t λ using (30).

:Step5 Repeat step 2 to 4 until convergence.

In this subsection, an algorithm is proposed for minimizing ISL and stopband power metric based
on ADMM. It is briefly summarized as Algorithm 1 consisting of five steps. The three key steps,
namely, step 2 to 4, of this algorithm are elaborated further as follows.

:Step2 Update with the obtained at the tth iteration.
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Since the nonconvex constraint is only enforced on the linear function only, the optimization

problem can be simplified by decomposing it into 3N-1 subproblems with variable pair
 , ,,n r n iz z
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A B t t  c c λ y

(24) is a
quadratic constraint linear optimization problem, and it can be solved by the Lagrange multipliers
method (Readers can refer to more details in [16]). The optimal solution of (24) is given by
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:Step3 Update 1y with the  ( 1), ( )t tz λ at the most recent value.
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It is obvious that the analytical solution of (27) can be obtained directly, but computing the (6N-2)
matrix inverse is time-consuming and computationally demanding. In order to reduce the
computation complexity, (27) is converted from real-valued version into complex-valued version,
which is stated as
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
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. However, the solution has computation

complexity due to the matrix inverse and multiplications required by
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.
:Step4 Update using:

 1(t+1)= ( )+ ( 1) ( 1)t t t   λ λ y z
(30)

Step 1 to 3 are repeated until the convergence condition is satisfied, e.g.,
1 2
( 1) ( 1)t t    y z

where


is a predefined threshold.
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4. Numerical Simulation

In this section, several numerical results are presented to demonstrate the effectiveness of two
proposed algorithms. We first investigate the performance of Algorithm 1 which aims to design
sequence for single-input and single-output (SISO) radar. The second example aims to analyze how
the relative weight affect the performance of algorithm 1. The third example is conducted to assess
the performance of Algorithm 2. All simulations were conducted on a PC with a 3.20GHz i7 CPU
and 64GB RAM using MATLAB R2018b.

In the first example, we design the unimodular sequence with length of 128 for SISO radar. The
proposed algorithm is compared with the state-of-the-art algorithms that of SCAN [9] and spectral-
MISL(SMISL) [11]. For fair comparison, the relative weight of all the algorithms is assigned to
make the ISL of waveform produced by each algorithm almost the same. The is assigned in the
proposed and SCAN algorithm, and the trade-off parameter in SMISL is tuned as 500. Additionally,
the normalized spectral stopband locates in for all algorithms, which is the same as the stopband

specified in [9]. The stopping criterion is set to be
1 2

1e-5k k  x x
. We produce 500 sequences

initialized by random-phase sequence, and use the same initial sequences in all algorithms.
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We investigate the correlation and stopband properties for the tested algorithms, and then
conduct their performance evaluations in terms of the following characteristics: i) the PSL and ISL
values of the produced sequence when the algorithms reach the preset convergence condition; ii)

stopP
defined as

2
stop 1010log (max ( ) )P Y k

, where
 Y k

denotes the 2N-points FFT of the designed
sequence; iii) average passband-to-stopband power ratio (APSPR) [12],[33], that is

p p
10

s s

 
AP

/
SPR=10lo

/
g

 
P N
P N

 
 
  (31)

(a)

(b)
Figure 1: Comparison of one simulation result produced by Algorithm 1, SMISL and SCAN.

(a) autocorrelations; (b) power spectrum density.
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Figure 2: Comparison of average autocorrelations of 500 independent simulation
results produced by Algorithm 1, SMISL and SCAN.

Table 1: Peromace Comparison of Three Algorithms.

Method ISL[dB] PSL[dB] stopP [dB] APSPR[dB]
Algorithm1 -8.056 -20.081 -8.921 -10.653

SCAN -7.773 -20.735 8.781 -10.401
SMISL -7.268 -19.452 -8.408 -13.103

where pP and sP are the total power in the passband and stopband, respectively. pN and sN represent
the number of frequencies in passband and stopband.

Figure 1 shows autocorrelation and power spectrum density of the sequence of one simulation result,
and performance comparison is listed in Table I. It can be seen from the Figure 1(a) that for all
tested algorithms, the performance is comparable in terms of PSL. The normalized PSL values of
Algorithm 1, SCAN and SMISL are -20.081 dB, -20.735 dB, and -19.425 dB, respectively. Among
all the tested algorithms, the proposed algorithm produce sequence with the lowest ISL stopP and as
shown in Table 1. As far as APSPR, the SMISL is most attractive, and the algorithm 1 is better than
SCAN. In addition, Figure 1(b) shows that sequence produced by algorithm 1 jitters least.
Analyzing of the results verifies that Algorithm 1 can produce sequence with the best correlation
and stopP performance under some certain initial sequences.
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Figure 3: Power spectrum density of 500 simulation results produced by Algorithm 1.

Figure 4: Power spectrum density of 500 simulation results produced by SCAN.

Figure 5: Power spectrum density of 500 simulation results produced by SMISL.
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Table 1: Average of ISL and APSPR.

Method ISL[dB] APSPR[dB]
Algorithm1 -7.776 -10.832

SCAN -7.835 -10.303
SMISL -7.952 -13.564

The performance comparison is conducted further based on the 500 simulation results. Figure 2
shows the average aperiodic normalized autocorrelation of 500 independent results, and the average
values of ISL are listed in Table II. Corresponding to Algorithm 1, SMISL and SCAN, the average
values of ISL are -7.776 dB, -7.952 dB and -7.835 dB. Thus, all the tested algorithms have
comparable autocorrelation performance in the first example. The normalized power spectrum
density of Algorithm 1, SCAN and SMISL is plotted in Fig.3 to 5, and their average APSPR values
are -10.832 dB, -10.303 dB and -13.564 dB, as listed in Table II. From the Figure 3 to 5, it is
apparent that sequences produced by Algorithm 1 and SCAN jitter less than SMISL in the passband.

Figure 6: PSL distribution of 500 simulation results produced by tested algorithms.

To further evaluate the performance of power spectrum density and autocorrelation, we analyze
the distributions of stopP and PSL of all sequences produced by the tested algorithms, and plot them
in Fig. 6 and 7. As shown in Fig. 6, the PSL of most sequences obtained from proposed algorithm,
i.e., 85%, have magnitudes less than -19.75 dB. It can be seen from Fig.7 that more sequences
produced by the proposed algorithm and SCAN, corresponding to 93.4% and 95%, have stopP less
than -7.5 dB, though the SMISL get better performance in terms of APSPR.
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Figure 7: Peak stopband power distribution of 500 simulation results produced by tested
algorithms.

This example demonstrates the effectiveness of the proposed algorithm of designing sequence
with good correlations and suppressed stopband power. Form the discussion above, the following
findings are obtained. i) Simulation results presented in Fig.6 shows that the proposed algorithm is
best among the tested algorithms in terms of ISL; ii) With ISL being the same, the proposed
algorithm is better than SMISL in terms of stopP and spectral flatness, and almost the same as SCAN;
iii) As far as APSPR, the SMISL is most attractive, and algorithm 1 is better than SCAN. Hence,
the proposed algorithm may turn out to be a good choice when all autocorrealtion and spectrum
characteristics are considered.

In the second example, the algorithm performance is evaluated versus different relative weight  ,
and the SCAN algorithm is tested for comparison. The SMISL algorithm is excluded because its
tradeoff parameter is different from the proposed algorithm and needs to adjust with the change of
relative weight of proposed algorithm. The relative weight is increased from 0.1 to 0.9, namely,

{0.1,0.2,0.3,  0.4,0.5,0.6,0.7,0.8,0.9} Similarly, we produce 100  independent sequences for each in
this example. The tested algorithms are initialized by the same random-phase sequence set. The
remaining parameters are identical to those in the first example.

Figure 8: Comparison of average APSPR of 100 sequences versus relative weight.
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Figure 9: Comparison of average ISL of 100 sequences versus relative weight.

The ISL and APSPR versus different relative weight are plotted in Figure 8 and 9. As can be
seen from Figure 8 and 9, APSPR of both algorithms decrease with the increase of relative weight,
and ISL shows the opposite trend.

The proposed algorithm produces sequences with lower APSPR than SCAN when relative
weight 0.5  , whereas both algorithms are almost the same in terms of ISL. When relative
weight 0.5  , the proposed algorithm is inferior to SCAN in terms of ISL with almost identical
APSPR. The results of this example indicate that the proposed algorithm is better when we focus far
more on APSPR, and SCAN performs better when ISL is more critical.

5. Conclusions

In this paper, we consider unimodular sequence design problem under the spectral and correlation
sidelobe constraints, which is formulated as a bi-objective optimization problem subject to
unimodular constraint. The optimization problem is further simplified as a single objective
optimization problem based on Pareto optimization method and parallelogram identity. By
introducing an auxiliary variable, the non-convex and NP-hard problem is separated into a linearly
constrained quadratic program and an unimodular constrained linear program. An algorithm is
developed based on ADMM framework to find the Pareto-optimal solution of the design problem.
Simulation results demonstrate the effectiveness of the proposed algorithms.

A limitation of this study is that the proposed algorithm shows slower convergence rate than the
state-of-the-art algorithms. As future work, we will focus on simplify the computation complexity
further in the computationally demanding steps and accelerate the convergence of algorithm. In
addition, it might be interesting to synthesize sequence set with flat spectrum, i.e. designing
unimodular orthogonal sequence set under specified spectral shape and unimodular constraint.
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